Tengfei Hao 1,2,3†Hao Ding 4†Wei Li 1,2,3Ninghua Zhu 1,2,3[ ... ]Ming Li 1,2,3,*
Author Affiliations
Abstract
1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
4 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
5 Peng Cheng Laboratory, Shenzhen 518052, China
6 e-mail: ytdai@bupt.edu.cn
Dissipative solitons relying on the double balance between nonlinear and linear effects as well as cavity loss and gain have attracted increasing attention in recent years, since they give rise to novel operating states of various dissipative nonlinear systems. An optoelectronic oscillator (OEO) is a dissipative nonlinear microwave photonic system with a high quality factor that has been widely investigated for generating ultra-low noise single-frequency microwave signals. Here, we report a novel operating state of an OEO related to dissipative solitons, i.e., spontaneous frequency hopping related to the formation of dissipative microwave photonic solitons. In this operating state, dissipative microwave photonic solitons occur due to the double balance between nonlinear gain saturation and linear filtering as well as cavity loss and gain in the OEO cavity, creating spontaneous frequency-hopping microwave signals. The generation of wideband tunable frequency-hopping microwave signals with a fast frequency-hopping speed up to tens of nanoseconds is observed in the experiment, together with the corresponding soliton sequences. This work reveals a novel mechanism between the interaction of nonlinear and linear effects in an OEO cavity, extends the suitability and potential applications of solitons, and paves the way for a new class of soliton microwave photonic systems for the generation, processing, and control of microwave and RF signals.
Photonics Research
2022, 10(5): 05001280
李明 1,2,3郝腾飞 1,2,3潘时龙 4邹喜华 5[ ... ]闫连山 5
作者单位
摘要
1 中国科学院半导体研究所 集成光电子学国家重点实验室,北京 100083
2 中国科学院大学 电子电气与通信工程学院,北京 100049
3 中国科学院大学 材料科学与光电研究中心,北京 100049
4 南京航空航天大学 电子信息工程学院,江苏 南京 211106
5 西南交通大学 信息科学与技术学院,四川 成都 611756
6 东南大学 电子科学与工程学院,江苏 南京 210096
7 上海交通大学 电子信息与电气工程学院,上海 200240
微波光子学是一门融合了微波技术和光子技术的交叉学科,是研究光波和微波在媒质中的相互作用以及在光频域实现微波信号的产生、处理、传输及接收的微波光波融合系统。由于现有的微波光子系统大多由分立器件组成,在体积、功耗、稳定性、成本等方面仍有待提升,因此集成化是微波光子技术发展的必然趋势。文中探讨了微波光子集成技术面临的主要科学与技术问题,总结了该技术的发展现状和前沿研究进展,并对其未来发展前景进行了展望。
微波光子学 集成微波光子学 光电子学 光电集成 光子集成电路 microwave photonics integrated microwave photonics optoelectronics optoelectronic integration photonic integrated circuit 
红外与激光工程
2021, 50(7): 20211048
李明 1,2,3郝腾飞 1,2,3李伟 1,2,3
作者单位
摘要
1 中国科学院半导体研究所 集成光电子学国家重点实验室,北京 100083
2 中国科学院大学 电子电气与通信工程学院,北京 100049
3 中国科学院大学 材料科学与光电研究中心,北京 100049
微波光子学可借助光电子器件实现微波信号的产生、处理、接收和分配等功能,具有宽带、低传输损耗、轻重量、快速可重构及抗电磁干扰等优势。随着微波光子学的理论方法和技术应用的不断发展,微波光子与多学科交叉融合成为其核心发展方向。文中对微波光子与部分学科交叉融合的现状进行了总结,并对微波光子与激光技术、集成光电子学、量子技术和人工智能等前沿学科的交叉融合进行了展望。
微波光子学 激光技术 集成光电子学 集成微波光子学 量子技术 人工智能 microwave photonics laser technology integrated optoelectronics integrated microwave photonics quantum technology artificial intelligence 
红外与激光工程
2021, 50(7): 20211042
Tengfei Hao 1,2,3Yanzhong Liu 1,2,3Jian Tang 1,2,3Qizhuang Cen 4[ ... ]Ming Li 1,2,3,*
Author Affiliations
Abstract
1 Chinese Academy of Sciences, Institute of Semiconductors, State Key Laboratory on Integrated Optoelectronics, Beijing, China
2 University of Chinese Academy of Sciences, School of Electronic, Electrical, and Communication Engineering, Beijing, China
3 University of Chinese Academy of Sciences, Center of Materials Science and Optoelectronics Engineering, Beijing, China
4 Beijing University of Posts and Telecommunications, State Key Laboratory of Information Photonics and Optical Communications, Beijing, China
5 Universitat Politécnica de Valencia, ITEAM Research Institute, Photonics Research Labs, Valencia, Spain
6 University of Ottawa, Microwave Photonics Research Laboratory, Ottawa, Ontario, Canada
An optoelectronic oscillator (OEO) is a microwave photonic system that produces microwave signals with ultralow phase noise using a high-quality-factor optical energy storage element. This type of oscillator is desired in various practical applications, such as communication links, signal processing, radar, metrology, radio astronomy, and reference clock distribution. Recently, new mode control and selection methods based on Fourier domain mode-locking and parity-time symmetry have been proposed and experimentally demonstrated in OEOs, which overcomes the long-existing mode building time and mode selection problems in a traditional OEO. Due to these mode control and selection methods, continuously chirped microwave waveforms can be generated directly from the OEO cavity and single-mode operation can be achieved without the need of ultranarrowband filters, which are not possible in a traditional OEO. Integrated OEOs with a compact size and low power consumption have also been demonstrated, which are key steps toward a new generation of compact and versatile OEOs for demanding applications. We review recent progress in the field of OEOs, with particular attention to new mode control and selection methods, as well as chip-scale integration of OEOs.
optoelectronic oscillator microwave photonics Fourier domain mode-locking parity-time symmetry photonics integrated circuits 
Advanced Photonics
2020, 2(4): 044001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!